
Software Engineering

and Architecture

Containers - Docker

Lightweight Virtual Machines

From Dev to Ops

• We have this wonderful client-server system developed

– Lots of unit and integrations tests, highly flexible, highly reliable

• But we only have it on our local laptops

– Git clone, gradle something

• We need to make it run in production

– Deployment idriftsættelse

• Requires

– A) A computer with DNS name on the ‘big internet’

– B) Get our executable system on to that machine

CS@AU Henrik Bærbak Christensen 2

Development

Operations

The Old Way

• … a manual procedure

• Buy a server farm or Rent a VM in the cloud

• Ah – we need a database for the server

– Rent one more machine; install linux, install MySQL, copy

table init scripts, configure linux for database systems, …

• Now, log into the server

– Install linux, git, java, gradle, …

– Git clone the repository

– Run the executable using ‘parameters for production’

CS@AU Henrik Bærbak Christensen 3

But it does not scale…

• … Imagine 10.000+ machines to do that on 

– And imagine that 100 persons handles 100 machines each, each

doing it in a slightly different way

– In one year, you have 10.000 machines configured in about 500

different ways, meaning any update/fix of the software requires

different actions for each machine 

• The multiple maintenance problem for operations

– Not multiple copies of code, but of machine configurations !

CS@AU Henrik Bærbak Christensen 4

Example: Uber

• ~100.000 VMs to run the Uber infrastructure…

CS@AU Henrik Bærbak Christensen 5

The Moving Code Problem

• Crossing boundaries, that is, moving code

Source: Torben Haagh, StiboSystems

CS@AU Henrik Bærbak Christensen 6

Was Solved in 1960’ies

CS@AU Henrik Bærbak Christensen 7

Docker = Container

CS@AU Henrik Bærbak Christensen 8

Not Just Programs - Environments

• A Container is a Virtual Machine

– A VM is

• The operating system

• All supporting libraries

• The executable / system

• That is:

– The code

+ the full environment of

the (virtual) machine

– It is self-contained! No

external dependencies!

CS@AU Henrik Bærbak Christensen 9

So – What do We Get?

• Instead of your specific labtop which is

– Lots of programs and your specific configuration of OS

– And then HotStone (server) manually fiddled to make it run

• … we instead build a container which

– Includes the OS + all supporting libraries + HotStone code

• That can be run on a “bare metal” computer that has no

specific configuration

– Except – it of course must be able to run containers:

• Docker Engine

– A program to deploy/monitor a set of Docker containers

CS@AU Henrik Bærbak Christensen 10

Solves Scaling Issue

• Problem solved:

– We rent 10.000 identical machines with no special configuration

• (that runs docker engine, ok)

– And then deploy containers with our code in.

CS@AU Henrik Bærbak Christensen 11

Building a Container

Infrastructure-as-code

“IaC”

Example: Hello-Javalin

• The most basic web server system

– ‘gradle hello’

• Starts a web server on port 4567

– Browse to ‘(servername):4567/hello/(a name here)’

CS@AU Henrik Bærbak Christensen 13

My Container…

• I want to build a docker container which contains

– Linux Operating System

– Java 25 runtime system

– Gradle v9.2

– And my Hello-Javalin code

• build.gradle

• src/ folder

• Can run on any machine in the world if it has docker

engine installed and nothing else required!

CS@AU Henrik Bærbak Christensen 14

Building Containers

• Infrastructure-as-code, IaC

• We write code to build

the container

– Dockerfile

• A DSL for building

Docker images

• Image = Static unit

• Container = Runtime unit

CS@AU Henrik Bærbak Christensen 15

IaC

• Parts:

– Base

– Copy

– Execution

CS@AU Henrik Bærbak Christensen 16

Building

• Image name: henrikbaerbak/private:hello-javalin

CS@AU Henrik Bærbak Christensen 17

Local Running/Testing

• ‘run’

– -p 4567:4567 The container’s port is mapped to localhost

– -d In the background (daemon)

CS@AU Henrik Bærbak Christensen 18

Deployment

Via Docker Hub

Hub

• Maven Repository is a cloud service hosting java libraries

• Docker hub does the same for images!

– Push to my ‘henrikbaerbak’ account on docker hub.

• Now it is globally accessible !

CS@AU Henrik Bærbak Christensen 20

To Helsinki

• I want to deploy it on my rented machine

in Helsinki

– Which has DNS ‘hotstone.littleworld.dk’

CS@AU Henrik Bærbak Christensen 21

Process

• Log into my machine in Helsinki

– Using my Windows Putty secure shell; and ‘run’ container

• Ah – also open port 4567 in the firewall ☺

CS@AU Henrik Bærbak Christensen 22

Try it ☺

Bottomline

• It takes about 1 minute!

• My Helsinki machine does not have neither Java nor

Gradle, nor Go, nor Erlang, nor Rust, nor C++… installed

• And it can run it all, if they are containerized!

CS@AU Henrik Bærbak Christensen 23

Examples

• My ‘cave service’

in GoLang

CS@AU Henrik Bærbak Christensen 24

Examples

• My ‘cave service’

in Python

CS@AU Henrik Bærbak Christensen 25

Examples

• My ‘cave service’

in Scala

CS@AU Henrik Bærbak Christensen 26

Examples

• My ‘cave service’

in Java

CS@AU Henrik Bærbak Christensen 27

And Much More

• My Hetzner machine runs other stuff for me…

• The hot stone game server with its associated MariaDB is

is running on the machine...

CS@AU Henrik Bærbak Christensen 28

And the World is Big

• All major players of open source have containers for their

products.

• Want to have a MongoDB database?

– Easy! It takes about ½ minute to get it installed and running!

CS@AU Henrik Bærbak Christensen 29

Deploying Systems

Outlook to

Orchestration Tools

Only one service…

• ‘docker run …’ allows me to ‘start one service’

• But systems in practice need many more services

• Ex: HotStone server on hotstone.littleworld.dk

– That server stores all method calls in a SQL database for “future

analysis”

– Exercise: What pattern is in play here ☺?

CS@AU Henrik Bærbak Christensen 31

[SideBar]

• So I can query like “when was a card played by whom?”

CS@AU Henrik Bærbak Christensen 32

The Problem

• I need to deploy

– A MariaDB SQL server container

– A HotStone server

– And ensure they talk to each other (DNS, network)

– Ups – and I need hard disk space for the database itself which

survives restarting the system!

• (By default, a container has its own file system (of course), and thus

removing it, will destroy all contents!)

• We need infrastructure-as-code to deploy systems

CS@AU Henrik Bærbak Christensen 33

The Containers

• A) MariaDB Easy part: Images on Docker Hub

• B) HotStone server

– I write a Dockerfile, build container, and push

CS@AU Henrik Bærbak Christensen 34

Docker Swarm

• IaC for orchestration

CS@AU Henrik Bærbak Christensen 35

Internal Network and DNS

• Network ‘plnet’ and Named servers

CS@AU Henrik Bærbak Christensen 36

Volume

• Volumes are stored on the host machine

CS@AU Henrik Bærbak Christensen 37

Time to Deploy (Testing)

• On my Staging machine, just ‘docker stack deploy’

CS@AU Henrik Bærbak Christensen 38

Time to Deploy (Production)

• On my cloud machine, the only contents is the IaC

• The ‘run…’ script is just the ‘docker stack deploy…’ command

CS@AU Henrik Bærbak Christensen 39

Scaling Out

• Swarm is a swarm

– Four machines in my swarm

• Grum, bob, stuart, kenny

• Automatically deploys…

– Redis database

– Five ‘alsome’ servers

– One visualizer service

CS@AU Henrik Bærbak Christensen 40

Summary

• This is not SWEA curriculum

– No exam questions, no questioning at the exam

– Beyond our ‘software architecture in the small’ focus of SWEA

• But…

– It is an important conceptual framework and tool stack to master

for large scale, industrial, software development and operations.

• Swarm is not widely used (Docker containers are!)

– The big player is Kubernetes

– From a conceptual point of view, they are the ‘same thing’…

• An orchestration tool…

CS@AU Henrik Bærbak Christensen 41

